Casimir forces in the time domain: Applications
نویسندگان
چکیده
Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.
منابع مشابه
Dynamic Analysis of a Nano-Plate Carrying a Moving Nanoparticle Considering Eelectrostatic and Casimir Forces
This paper reports an analytical method to show the effect of electrostatic and Casimir forces on the pull-in instability and vibration of single nano-plate (SNP) carrying a moving nanoparticle. Governing equations for nonlocal forced vibration of the SNP under a moving nanoparticle considering electrostatic and Casimir forces are derived by using Hamilton’s principle for the case when two ends...
متن کاملSOME POINTS ON CASIMIR FORCES
Casimir forces of massive ferrnionic Dirac fields are calculated for parallel plates geometry in spatial space with dimension d and imposing bag model boundary conditions. It is shown that in the range of ma>>l where m is mass of fields quanta and a is the separation distance of the plates, it is equal to massive bosonic fields Casimir force for each degree of freedom. We argue this equalit...
متن کاملCasimir forces in the time domain: Theory
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain FDTD scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit exist...
متن کاملCasimir forces in the time domain: I. Theory
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We introduce a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time-evolution of electric and magnetic fields in response to a set of current sources, in a mod...
متن کاملModeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams
Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear s...
متن کامل